Flips in combinatorial pointed pseudo-triangulations with face degree at most four

نویسندگان

  • Oswin Aichholzer
  • Thomas Hackl
  • David Orden
  • Alexander Pilz
  • Maria Saumell
  • Birgit Vogtenhuber
چکیده

In this paper we consider the flip operation for combinatorial pointed pseudo-triangulations where faces have size 3 or 4, so-called combinatorial 4-PPTs. We show that every combinatorial 4-PPT is stretchable to a geometric pseudo-triangulation, which in general is not the case if faces may have size larger than 4. Moreover, we prove that the flip graph of combinatorial 4-PPTs is connected and has diameter O(n), even in the case of labeled vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flips in combinatorial pointed pseudo - triangulations with face degree at most four ( extended abstract )

In this paper we consider the ip operation for combinatorial pointed pseudo-triangulations where faces have size 3 or 4, so-called combinatorial 4-PPTs. We show that every combinatorial 4-PPT is stretchable to a geometric pseudo-triangulation, which in general is not the case if faces may have size larger than 4. Moreover, we prove that the ip graph of combinatorial 4-PPTs with triangular outer...

متن کامل

3-Colorability of Pseudo-Triangulations

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain classes of plane graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations (a generalization of triangulations) and prove NP-completeness for this class. The complexity status does not change if the maximum face-degree is bounded to fo...

متن کامل

International Journal of Computational Geometry & Applications

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. 31 However, for certain families of graphs, like triangulations, polynomial time algorithms 32 exist. We consider the family of pseudo-triangulations, which are a generalization of 33 triangulations, and prove NP-completeness for this class. This result also holds if we 34 bound their face degree to four, or...

متن کامل

Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For p...

متن کامل

Enumerating pseudo-triangulations in the plane

A pseudo-triangle is a simple polygon with exactly three convex vertices. A pseudo-triangulation of a finite point set S in the plane is a partition of the convex hull of S into interior disjoint pseudo-triangles whose vertices are points of S. A pointed pseudo-triangulation is one which has the least number of pseudo-triangles. We study the graph G whose vertices represent the pointed pseudo-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014